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T: An approximate procedure is introduced to analyze nonlinear multistory
Wures within the framework of the conventional response spectrum method. Its
struct jon is based on the use of nonlinear response spectra and an approximate
derivltsition of the equation of motion for multidegree-of-freedom nonlinear systems.
decﬂpomposj_tian is attained by considering the nonlinear terms in this equation of

jon as additional external forces and, thus, by interpreting it as the equation of
mti-m of linear systems with the initial properties of the nonlinear ones but
::;jected to a modified set of inertia forces. For simplicity, the procedure is herein
1imited to elastoplastic systems of the shear-beam type. 1Its accuracy is evaluated by
.omparing the approximate and step-by-step integration solutions of systems with three
and ten degrees of freedom when subjected to three different earthquake ground motioms.

| INTRODUCTION technique that has been widely used in the
' analysis of linear structures, several
It is well known that under the current investigators have thus proposed different
philosophy of earthquake-resistant design, procedures to extend the use of this
a structure is supposed to resist strong technique to nonlinear systems (Newmark,
and severe ground motions through 1970, Shibata & Sozen 1976). In general,
inelastic deformation. As a result, the the trend has been the use of inelastic
capability of a structure to withstand a response spectra in combination with an
strong earthquake is measured by its elastic modal analysis (Newmark 1970,
ability to resist the inelastic Tansirikongkol & Pecknold 1978), or the
-defomtiﬁns or ductility demands imposed use of linear response spectra in
by such an earthquake. Thus, to assess conjunction with equivalent linearization
such inelastic deformations one needs to techniques (Caughey 1963, Iwan 1968,
c2ITy out analyses in which the nonlinear Tansirikongkol & Pecknold 1978). It .
‘;:ﬂt;acteriguc, of the structure are taken seems, however, that such procedures are
reliable mt. Presently, however, a too complicated or too empirical and,
—_— nonlinear analysis of a thus, judging from their relatively low
| sree-of-freedom (MDOF) system may use, still unsatisfactory for general
be only pPossible th h Clough et al. 1965, Veletsos
ntegrasson 4 rough a step-by-step applications (Clough et al. , Vele
& iaw Of 1ts equation of motion, & Vann 1971, Anagnostopoulos et al. 1978,
c‘“erm.: I;I'-ocedure that is costly and Hadjian 1982).
40 most cases and certainly It is the purpose of this paper to
able for preliminary designs. propose an alternative method by means of
» 8uch a numerical procedure which a nonlinear MDOF structure may be
cilitate a direct visualization analized by an extension of the
“Ural behavior, or the sensitivity conventional response spectrum
€8ponse of a Btructure to design technique. It is intended to serve
::ft:.‘riaum' in the primarily as a tool in preliminary
., €8 of the ground motion that designs, where a rigorous step-by-step
T _ ' integration approach may be prohibitively
analyg4 mmh for simpler methods of costly and time consuming. As such, its
-.-.,?_.tf‘ra‘-'-,ted by the simplicity simplicity is empasized over its
- Tty of the response spectrum accuracy. Also, for the sake of
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2 APPROACH

Using the definition of a reSPtand A
spectrum, it is easy t
is also possible to cons;::;s
a for nonlinear SY .
:Ee:tzertain load-deformation type-gfﬂstep
behavior is established, by a stePin£
integration one can obtain for algte o
grouﬁd disturbance plots that reé f -
maximum response of a seriles of simp il
oscillators to their natural frequenc s
and damping ratios. Examples of thesed .
the inelastic response spectra obtaine b4
Riddell and Newmark (1979) for systemsS
with elastoplastic, bilinear, and bilinear

with stiffness degradation load-
deformation curves. Figure 1 shows a
sample of such nonlinear response spectra,
where the parameter used to describe the
nonlinearity of the oscillators 1is their

yield deformation.
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developed seeking this approach,
purpose‘ in what fGllOWS an equati

derived first to express the maxip
response of a nonlinear SDOF gygq,

terms of its natural frequency, K 4
ratio, and yield displacement,

Thereafter, the equation of motig
representing the behavior of 3 nonline,,

MDOF system is manipulated tq transfor,
into an approximate series of simple it

equations, where each representg the
equation of motion of a nonlinearSlDOF
system. Lastly, the solution tgq each of
these equations is related to the
excitation nonlinear response Spectrug
comparing it with the expression for the
maximum response of a nonlinear Spor

system and by introducing a.definthn1gfa
modal yield displacement.
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3 MAXIMUM RESPONSE OF NONLINEAR SDOF
SYSTEM

Consider the SDOF system depicted in
Figure 2(a), which is defined by its mass

M, damping constant C, initial stiffness
K, yield displacement xy, and the load-

deformation relationship shown in Figure
2(b). The equation of motion for this

system when subjected to a ground
acceleration Ug(t) may be written as

Mx(t) + Ci(t) + R0 = - M0 (6) (D

Where x denotes the displacement of the
mass M relative to the ground, and FR(X)*

a function of x that needs to be read from

Figure 2(b), represents the restoring
force in the spring of the system.
However, following the idea suggested by

Geschwindner (1981) and Dungar (1982), for
€very point in the load-deformation curve

the restoring force may be written in
terms of an elastic and a corrective

COmponent as (see Figure 3)

FREX) = K x(t) - kIX(t) - X, ()]

(2)



| stepwise continuous T
x and arc U,(t) corres di
heré€ z ary from branch to bran 5 ponding to a natural

f ated in Ta Xy(t) yield displacement Xy thus, if

| dic
as in doml}' between upper and lower SD
raﬂ (wi g# X ) d
garies oy indicated in Figure 4. Upon one may write eénotes such an ordinate,
n of equation 2 into equation

ing terms, and dividing through SD = £ =Pt i
ranging (W‘E,xy) |(1/m)foe o, {Ug( iy

2
w” [ X( T)—Xy('r)]} sin m'(t—‘t)d’t.ma &5

2
e e :

2
) - wx(e) - X (0)]]

| & /K/M is the natural frequency of

w =

ere sty D E =C/2um its damping

theizy both at low response levels. T
ratlts

if the right-hand side of
However . ’
X min l
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]! egguﬂd acceleration defined as
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Ueff
rhe equation of motion of the system can

altematively expressed as

be
P )+ uit) = - U (£) (5) .
x(t) + 2 ef f
Figure 3. Load-deformation curve
| Thus, the vibrational motion of a
nonlinear SDOF system can be viewed as
that of a linear one with the initial | | | : ]
| properties of the former, but subjected to S _I""‘ [IIT‘"
an effective ground acceleration as given E |
by equation 4., As a consequence, the O IOk | L ' I ~
| nethods for linear systems can be used to 5 |
| find its maximum response, provided the & =
actual ground acceleration is substituted 5 .
by the effective one. >
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Figure 4. Variation of )S, with time

Table 1. Values of X and XY

Branch ). Xy
1 Xy Xy
2 X Xy
3 Xmax Xy
4 X Xy
> Xmin _xy

This expression may be considered an
analytic representation of a nonlinear
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be helpful
response spectrum, which e tems with

later on in the treatment of SYS S ot
several degrees of freedom-. It sho

noted that in this equation :
of X(71) and X (T) is not known n
advance, and"tKErefore for a given -
excitation U_(t) one cannot uUSe€ n i o
calculate response spectrum ordinate?.ct
Its usefulness, rather, lies Ol the ra
that an integral of the form O s
hand side can be easily determined fro
the nonlinear response spectrum of theiS
associated ground acceleration. This 4
something that may be available or may

the variation

calcualted without any major difficulties
by a step-by-step integration.

Figure 5. Elastoplastic three-degree-of-
freedom system

4 MODAL DECOMPOSITION OF EQUATION OF
MOTION FOR NONLINEAR MDOF SYSTEMS

4.1 Equation of motion

If elastoplastic behavior ig assumed for

all the floors of an MDOF system, but each
characterized by its own initial stiffness
and yield displacement, it is evident from

theiabove discussion that its vibrational
motion may algo be répresented by the

£ its right-

M, (xy + ?:i; . glxl i T o
M, (xq * U) + Cz(’?z e L Py =

: “C3(x3 - xz) —~ FR3 = 0 (8)
MB(X3 + Ug) g C3(i3 - iz) 1 S

where M,, M,. M, are such masses;

Cc., its damping constants; FRI‘ T ‘1
tge restoring forces in itsg Spriﬁés FR3
given by Figure 5(c); and x ¥ 8
felative diSplaCemﬁntS of t%

My, Mj, respectively.
same procedure employed for the SDOF
system is now used to express s

restoring forces Fp,, Fro, and FR3:h1
terms of elastic and correctiye

components, these restoring
written as

FRi o Kidi i K1D1I+ KiDYi‘ i=112¥3 (g)

where dl‘ d2- d3 denote deformations in
the springs of the system, apg Dl*tb D
and Doy, Dya, Dy3 are stepwise COntinygy,?
functions that vary from branch to branc
as indicated in Table 2. If it iq

considered that d; = x,, d, = x

1 1 2 2
d3 5 Wogir? X, the equations of motion of
the system may be therefore €Xpressed gaq

2-..

forces can g

M. x +(C1 S C2) il - Cziz + (K =xY .

e

- K2x2 -MlUg+ Kl(Dl - D

MU+ Ky (D, - D_.)

which in matrix form can be put into the
form

MI{x} + [C]{%} + [K){x} = (F;} . (I

where [M], [C], [K] are respectively the

System's initial mass., damping, and
Stiffness matrices, {x} its vector of

relative displacements, and {FI} ffjﬁ .

Vector that can be interpreted ag a vector
of effective inertia forces defined by

(12)

{FI}eff = -[M]{J}ﬁg + {K(D-Dy)}
In which {K(D—Dy)} is a vector whose
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Table :
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2 %
W
1 dy] a5 dy
0] ) (dq)
: (d1)max é 2’max 5 3’max
J d 2 3
; (Jl)min (d2)pin (d3)pin
N e g
sranch Dyl y2 y3
1 dyl gyz gyB
d 2 3
2 yl dy dy
d 2 2
3 3 -3 -d
4 yl _dY2 _dY3
5 ’dyl y2 y3

4.2, Equation of motion in terms of normal

coordinates

The inspection of equation 11 indicates
+hus that, as in the case of a single
degree of freedom, the equation of motion
of a nonlinear MDOF system can be
interpreted as the equation of motion of
an associated linear system subjected to
offective inertia forces. As such,

equation 11 can be the subject of a modal
decomposition as it would be the case with
the equation of motion of a true linear
system. Accordingly, if {y} represents
the rth mode shape of the sygtem, based on
its initial properties, and n (t), r = 1,
2,-3, are unknown functions of time, under
the transformation

3
)~ )}

r=1
after premultiplication by the transpose
of {1*}1_, and after making use of the
orthogonality properties of mode shapes,

;:ﬁtim 11 may be simplified to the
owWing serieg of equations:

{w}rnr(t) (13

2 g
W' n_ = (U)

s s r=1,2,3

N 4+ 2 E W
: Ews eff’

(14)

WMHE E

rth damgiand “. 8ignify respectively the

the BYGte:f rgEio and natural frequency of
effE(:tive S (Ur)eff represents an

ETrou
mode definad bl;d acceleration in the rth

(15)

which in the light of equation 12 may also
be written as

(U )

r eff o arU

T ~
g* @V 1{RD} - (RD_}1/ M_

(16)

Here o and M are respectively the rth
ticipati Tg
par P Oon ractor and_rth generalized

mass of the system, {dqdr is a vector of

the form
R T s =i
r | R | I lp'2 r VL)
i which v 1 = 1.2 3, are the elements
¥ th !
0 e mode shape {Y} , and {KD} and
{KDy} are defined byr
T
{KD} = { KlDl K2D2 K3D3 } (18)
T
KD = K
{ y} 1K Dgg «RoBo5 ollgn o) (X9)

It should be apparent that the set of
equations described by equation 14 does
not represent a set of independent

equations since (Ur)eff depends on the
deformations dl‘ d2‘ and d3, which in turn

depend on Nys My and Ny Note, however,
that the idea behind such a modal

decomposition is not to decouple the
equations of motion per se, but to relate

somehow these equations to the equation of
motion of a SDOF system.

4.3 Solution to rth modal equation

Equation 14 represents the equation of
motion of a linear SDOF system with
natural frequency w and damping

ratio &.i;-and subjgcted to a fictitious

ground acceleration: hence, as in the
single degree of freedom case, the methods

used for linear systems can be used to
obtain its solution. Accordingly, using

once again Duhamel integral, after
substitution of equation 16 the solution

of equation 14 results as

B o B e e
foe r [arUg

EY = = )
nr( ) g (20)

T 8 LA
{d¢}r({KD} - {KDy}) / Mr] sin wr(t 1)dT

which can also be written as

i AR e D
o (t) w - (ar/wr)foe i [Ug o

2 - .
W (Xr xyr)] sin wr(t T)dT

if
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2 e
X - X _ = {dv}T({xp} - (KD _})/(o w M)
: o ” g (22)

6,
By comparing equation 21 with equation z
it may be then seen that the former may

interpreted as the equation of a nonlinear

SDOF system with initial frequency
w , damping ratio £ , and a yield

digplacement that cah be calculated f;z:
equation 22. As such, the maximum Vva

of n_(t) may be obtained from the 2
nonlinear response spectrum of Uﬁ, a

thus one can write

(23)
’nrlmax 1 SD(wr"" gr’ xyr)
where Xor represents a modal yield

displacement that still remains to be

determined.
In the light of equations 13 and 23, it

1s therefore evident that the maximum
response of a nonlinear MDOF system can
also be estimated by means of a
combination of response spectrum values,
which, in similarity with the linear case,
and 1if N represents the system's total
number of degrees of freedom, may be

approximated as

N
b f )

max o)

[ar{dw}rsn(wr,ﬁr,x ok

(24)

when maximum distortions are the response
of interest, and similar expressions for
other types of response. Observe that

since the response of a nonlinear system

implicitly assumed in the establishment of
the above €quation that the approximate
rules that are normally used to combine
the modal responses of linear systems are
also applicable to nonlinear ones.

4.4 Modal vield displacements

One may then consider t
T e hat equation 22 isg

- T 3o (25)
A = { B
yr d‘p} {KDy}/(ar wr Mr) (26)

and that and iyr ihould behaye Lﬂuat
functions X and that describe the Che

behavior of a SDO¥ system, ag shown {
Table 1. However, if this ],g¢ eqllat?
On

is rewritten as

ﬂ

Mr) (27)

N
¥ zdlpi(r) K, Dyi)/(ar

2
)
yr i=1 r

where dy, (r) represents the ity Mo,
, one may notice th
Gf"hiw}r b at - fa e

quantity that varies between tha flegg
and a positive of a constant valua ;iue
e t

varies, rather, randomly in sigp and
value as shown in Figure § since-:

a function of time, fluctuates betwea, Vi
-d and + d as the distortion en

i 'Yi of the
it?{ floor of the system moves along ts
hysterisis loop; (b) dwi(r) is g3 q‘lanti
that may take positive angd negatiye ty

values; and (c) in general. not aly g
floors follow the same pattern of s

deformation, which means that not a1y
them are at the same branch of their of

corresponding load-deformation Curves ,
the same time. Strictly speaking
therefore, X _ does not Tépresent the
behavior of a nonlinear SDOF System, apg
hence an approximation of sope SOTrt g
necessary for an adequate definitigp of 4
modal yield displacement.

d
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Figure 6. Variation of Xyr with time

A possible approximation for a modal
yleld dispalcement may be attained by
observing that if is to characterize
the behavior of a SDOF system, the
following two coaditians need to be
satisSied: Lkt X" cani
(2 2 = constangf Ffom the first
COndiX{on and in the light of equation 21,
One can then write
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iy, e, Ve B e g P e

Bieg N T R
T an () K Dyi)/(arwr M) ]

Xor a
o i i=1 i,
Jhich can also be written as
y 2
2 ,,_._.%-—,..——-2‘ [121 (v, (KD )" +
i g Mr)
§ K, D
F ol 4V (r)KiDyi)(dtpj(r) D o]
rt (29
ver, if it is taken into consideration
we 5 %
fll:at. according to Table 2, Dyy = = dyi*

- can observe that the value of Xyr

by this expression is not a
E;E::ani. but a function of time that

varies according to the signs of the terms
of the double summation. Hence, to have g3

modal yield displacement consistent with
the concept of yield displacement of a

SDOF system, as an approximation such
double summation terms can be neglected to

obtain the following definition

on

i / 1{' Brant SRt
= fd bl 3 -] (30)
Ky_r : mz - sy i Yi
90 o X

where it has been taken into consideration
that D_, = + dyi, and that F}ri =K dzi.
where yi Fepresents the yield strength of
the ith” floor of the system.

Equation 30 should be considered thus
the sought expression to calculate the
Tod,al yield displacements that are needed
B‘;nthe use of equation 24. Note that
Equ:iithe terms of the double summation in
drawbaoi 29 have been neglected, a
. f100: hOf this approximation is that if
strenest 48 an exceedingly large yield
diﬁplgce °N€ obtains a large modal yield
elasty, “‘:“t for all modes and, hence,
althoygp, havior in al] modes. Therefore,

51 1n a realistic analysis the

flﬁora
of a 8ystem have yield strengths

Otder hat are finite and of the same

f ma
ANopa] 4 Bitude, to avoid this kind of
co us Bituatj_on on
mPUtat1° c

the Y of modal yield displacements

Cont
Temaip iibuti‘m of those floors that
Slastic at all times.

o7

nonlinear MDOF system by means of a

response spectrum analysis consists thus
of the following steps:

] Calculation of the natural
frequencies, mode shapes, participation
factors, and damping ratios of the system

on the basis of its initial elastic
properties.

7. Calculation of a modal yield
displacement for each of the modes of the
System using the definition given by
equation 30.

I Determination of the spectral
displacements that correspond to each of
the natural frequencies, damping ratios,
and modal yield displacements of the

system from a specified nonlinear response
spectrum.

4. Computation of vectors of maximum
modal displacements or distortions and
combination of these modal maxima using
the square root of the sum of the squares
rule, as indicated by equation 24.

M

Figure /. Elastoplastic 3-DOF structure

6 NUMERICAL EXAMPLE

To illustrate the application of the

suggested approximate nonlinear modal
analysis, consider the shear building
shown in Figure /7 with the parameters
listed in Table 3, when it is subjected to
the first 15.18 sec. of the E-W component
of El1 Centro, 1940, earthquake ground
acceleration. Elastoplastic behavior 1is
assumed for each of the floors with the
initial stiffnesses and yield strengths
indicated in Table 3. The corresponding
dynamic properties, on the basis of
initial stiffnesses, are given in Table 4.
For this particular building, the
established definition of a modal yield
displacement, equation 30, gives
xy1=0.054m. xy2=0.055m, and xy3=0.070m,
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calculated with such an EDPrORimate

hen the base of the
tios one procedure w Strucg,
o s anrdls:a:gigﬁr;aof the are BubjECteSoEzdtt:;iioi;ffe;ent Teg
Obtalilns Ifrom I:h&d r;:sfon under earthquake fresponding sola:i gl
o u
:::fstig::a:igzo?;ee Figure 1 for the g ;Ziecaccurate step-by“stzns Obtained
f 2% damping and Riddell and e tion The structure I numerical
;Pectr;:m“g;‘g) i e P G integra 703;;(1 | 8 are Shoyr, b
c::fea:ponding to other values of damping) figzzzsin Tables 3 and 5. D?I'EZTEterS Are
he following spectral values: SD(1.0, . i are respectivel] : dynamiﬁ
the following sp SD(1.749, 0.035, properties p vely Summarimhii
0.02, 0'0;42 3 7':n§mén(3.2i8, 0.064, Tables 4 and 6: '(I'hf;'. ?;ound motiong n
g.g;g)) : 0-95ccmr;. As a consequence, consédared a;ﬁént 2f Elrgt 15.18 gk T
: tion 2; ives the following maximum the E- EOTp(b) first 18 ;ntrﬁ‘ 1940,
€qua g g earthquake; % e pec, of th
interstory distortions: N86E component of Olympia. 1949 e
earthquake; and (c) first 1q Beid. o
0.47689 0.35883) § = Jasenant O Tafe, 1952, tiie
e g 0'33146 )2+(5.4 0.02388}) earthquake. 1In both cases it jg aSSumEd
¢ max . 0-83556 1.07127 that the structures are of the shear-y,
5 16446 . s type with elastoplastic 1oad-def0rmati'e.am
; R behavior defined by an initia] | -
+ (0.95 {0.35537})° } """ = {2.45 jcm 4T P Rt S t1ffnegy
0.23570 8.41 B SEEEE AL wodes g,

first five

the one with 10. The numerical for
Table 3. Parameters of 3-DOF structure integrations are carried out with the
computer program DRAIN-2D (Kannan And
Mass Damping Stiffness Yield Powell 1975) using a time step of ( 0025
Floor M, C; K, strength sec.
(Mg) (kN-s/m) (kN/m) Fyi (kN)
1 536 0.442 69.35 3500 Table 5. Parameters of 10-DOF Structyre
2 357 0.442 69,35 1500
3 179 0.088 13.87 500 Mass Damping Stiffness Yield
Floor Mi Ci Streﬂgth
L,
(Mg) (kN-s/m) (kN/m) Foqg (kN)

1 179 83907 249880 3250

Table 4. Initial dynamic properties of 2 170 3773 237050 3000
3-DOF structure 3 161 3574 224570 2000
4 Fa2 S g37s 212090 1750
M A 143 3177 199620 1500
frequency nasgs ratio 6 134 2978 187140 1250
(Hz) (Mg) 7 125 % 99980 174660 1150
W 8 I'E6 - 2581 162190 1100
G 1«- 8.9 0.020 9 107 2383 149710 1050
. 749 206.2 0.035 10 98 2184 137240 1000

3 3,218 27 .86 0.064

T e e R e T e e R L S

:oh:e 8.47689 0.35883 0.16440
Pe 1222315 _8-28271 =0.19097 The results of the analysis are
.68856 0.04473 Presented in Tables 7 and 8 where are 31:0
Note: mode shapes are included the average approximate to exac
Participation factors Zizmiii:;d 99 that ratios for the three earthquake

eéxcitations considered. Since a d
comparison on the basis of a single grout
motion ig meaningless and inconsistent
with the dverage response spectra used 1n
design practice, these average ratios ar‘
Calculated to gilve a more realistic

Measure of the effectiveness of the
method.
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Initial dynamic properties of

lelefﬁ;tructure R siEst @ hodel

10~ —— =

B ., e ree”
(o
=500 1108.9 = S0

i 2'653 163.0 0.133

3 5'863 26.7 0.293

i 7:306 143 0.365

5 s
)
: 812 0.1671 0.1453 0.1188
0.3342 0.2510 0.1493 0.0550
BN 0.4255  0.2008 ~0.0001 -0.1001
g 02200 0.4324 0.0362 -0.1581 -0.1041
e

0.3482 -0.1588 —0.1624 0.0586

0.8709

| 0185 0.1846 _0.2781 0.0017 0.1378
£ 1 1458 —0.030 SR 9560 0.1758 -0.0002
h 2480 -0.2548 _0.0790 0.1791 -0.1485
s 10005 ~0.4435 0.1511 -0.0059 ~0.0667
z 1.3589 —0.5532 B 3160 -0.2015 0.1321

mode shapes normalized so that

te:
:zrticipation factors are unity

Table 7. Approximate and exact maximum
story distortions in centimeters of 3DOF

structure
-
Earthquake Ave.
story E1 Centro Olympia Taft Ap/Ex
App. Ex. App. Ex. Atp. Fx. ratio
o T T R S . SR S
1 B Y 18 2.57 2.56 2.32 1.19
e 0 06 1.80 1.75 1.82 1.14
3 B s 529 7.92 4.73 6.31 0.74

Table 8, Approximate and exact maximum

Eitﬂry distortions in centimeters of
0~-DOF structure

e ,

Earthquake Ave.
Story E1 Centro Olympia Taft Ap/Ex

App. Ex. App. Ex. App. Ex. ratio
I TR
) ig? }.15 0.92 0.88 0.76 0.78 1.12
: Th 1-»09 Bev3 V.88 0.77 0.8l 1.10
e 1-28 0.90 0.86 0.76 0.81 0.95
S e B 0.87 0.83 0,73 0.79 0,96
P 1.49 0.83 0.79 0.70 0.75 0.98
B 0.14 0.78 0.75 0.64 0.85 0.98
. o 65 0.72 0.61 0.57 0.67 1.26
B 0.56 0.63 0.51 0.48 0.57 1.25
0 5 0.41 0.49 0.37 0.36 0.43 1.27

3 0.22 0.28 0.20 0.20 0.23 1.32

multistory structures.
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Figure 8. Elastoplastic 10-DOF structure

8 CONCLUSIONS

A response spectrum method has been

presented for the analysis of nonlinear
The method

involves the computation of natural
frequencies and mode shapes on the basis

of initial properties, the calculation of
modal yield displacements according to a
recommended formula, and readings from
nonlinear response spectra. It maintains
the simplicity and the convenience of the
conventional response spectrum technique,
and appears to give an accuracy that is
more or less consistent with the accuracy
attained in the analysis of linear
structures and certainly adequate enough
for preliminary designs. Notwithstanding,
only shear systems with elastoplastic
load-deformation behavior have been
considered, and thus it would be
convenient to extended it to include
flexible systems with a more sophisticated
hysteretic model before it can be put into
practical use. Along the same terms,
since the performed comparative analysis
has been somewhat limited in extent, it 1is
recommendable to examine its accuracy for
a wider variety of structures and ground
disturbances before any realistic claim on
iteg effectiveness can be made. Lastly, it
is desirable to study a little more in
depth the influence of the derived
definition for modal yield displacements
in the accuracy of the proposed method and
its adequacy to reflect the true behavior

of a nonlinear single—degree-of-freedom

169




- System.  It is believed that an improved bilinear MDF systems Subjectegd to

definition for these modal yield earthquake motioms. Structuyra) Rese
displacements might significantly improve Series No. 449, Univ. of Hlinois s
the overall accuracy of the method. Urbana. :
Veletsos, A.S. and Vann, W.p. 197
Response of ground-excited elast;h
lastic systems. J. Struc.
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